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corgo di Matematica
prof. Claudio Desiderio

Modulo 1: derivate
Funzioni reali di variabile reale

Unita' 5:
approfondimenti
derivate di funzioni circolari inverse
- derivata di arcseno
derivata di arcocoseno
- derivata di arctangente e arcocotangente
- Ultima regola di derivazione

“Non accontentarti di restare nel GRIGIO per paura
del NERO, ma punta dritto al BIANCO..

e tuffati dentro!

Entra nel vortice.. quindi, rallenta:

ritroverai tuttii COLORI

e farai splendere sempre [a tua Vital!"



DERIVATA D' UNA FUN2IONE /NVERSA
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INTERVALLO v/ CVI
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DIHOSTRIAHO CHE:

INTERVALLO v/ CVI
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FUNZION|I COMNPOSTE
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ULTIMA REGoLA DI DERIVAZIONE
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| UTILI22A UNA PROPRIETA DEI LOGARITHI
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NOX coAVIENE IMPARARE LA FORNULA A MEMORIA, MA
APPLICARE SEMPRE LA PROPRIETA~ DEI LOGARMMI E
LA DERIVATA DELA FUNZIONE ESPONEAZIALE
PRoODOTTO
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UA/FI DERWATA LOGARITMICA cuRIoSA
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UNA DERIVATA LOGARITHICA CURIOSA
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