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corgo di Matematica
prof. Claudio Desiderio

Modulo 1: derivate
Funzioni reali di variabile reale

Unita' 2 parte 2:
Dimostrazioni regole di derivazione
- Derivate delle funzioni logaritmiche
- Derivate delle funzioni esponenziali
- Derivate delle funzioni goniometriche

“Non accontentarti di restare nel GRIGIO per paura
del NERO, ma punta dritto al BIANCO..

e tuffati dentro!

Entra nel vortice.. quindi, rallenta:

ritroverai tuttii COLORI

e farai splendere sempre [a tua Vital!"
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