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corgo di Matematica
prof. Claudio Desiderio

Modulo3: teoremi sulle funzioni derivabili
Funzioni reali di variabile reale

Unita' 1:
Enunciati, significati geometrici e
dimostrazioni

> Teorema di Fermat

» Teorema di Rolle

> Teorema di Cauchy

» Teorema Di Lagrange

“Non accontentarti direstare nel GRIGIO per paura
del NERO, ma punta dritto al BIANCO..

e tuffati dentro!

Entra nel vortice.. quindi, rallenta:

ritroverai tuttii COLORI

e farai splendere sempre [a tua Vital!"
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L DEA E QUELLA DI CREARE L
RAPPORTO /WCREHENTALE
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PER I TEOReEHA DELLA PERHANENZQ
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TEOREMA DI ROLLE
IPOTES) 1\
sia £ [Q,/' \o] —> ‘R {a( DEFINMITA /M..}
CONMTINUAR NV [a,,' E] ij CoNTINVA
. NELL INTERVALLO
DERIVABILE /N]o,,-l:[ 'S CHUsO E Llnl{ﬂTo..}

r F@)=4(b)
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SIGNV|FICATo GEOMETRICO
DEL TEORENMA Dl ROLLE
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DINOSTRAZ IONE

gssEApo (1) cantiNe W [a ,-bJ
PER IL TEOREMA DI WEIERSTRASS

2 FUNZ2IONE E' DOTATR DI MASSINO
E HWVIMO ASSOLUT)

T ..Bce. [a;6) : £()=mmf(n) =m
dde[a;b]: :f(d.) = maxf() =N

PER DEFIVIZIQNE DI NASSIHO E MWWIMO :
m = £(c) ¢ $(d) =M

S\ PossQNO DISTINGUERE 2 CASI:

PRIMO CASO: m =M

SE IL HNIMO & IL MASSINO
COINCIDONO ALLoRA 2A FUNZIOAE
E' COSTANTE LY

m=MNzf(a)=f() ] . —




|
SE LA FUNZIONE E COSTAME

f@):k Ve [:a.l-lo:l
ALorn © F (W) =0 Vaefa;b]
w parnicotare 3cela;bl: £'(c)=0

SECONDO cASO: mc M

AAMENO UNO DE] 2 TRA HMINIMO E
MASSINO E  INTERNo ALL  INTERVALLO

[a;6]) (wvisTo cHE F(a)=F(L))

SuPPaWiAHO CHE  SlA ce_Jo.-IL[
con  £(c)=mmF(x)
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TEOPEMR DI CRAUCHY

|POTES)
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( NON HA OV SIGNIFIcATO GEonEfmco)

NO) 20 UTILIZZERERENO PER omoS"‘rkaRe
|  TEOREMI D1 LAGRANGE E DE HOPIfAL




DIMHOSTRAZIONE DEL TeORENR Dr CAUCHY
S5\ CONSIDERA UNA  FUNZIONE AUSILIARIA

QbY)=S61)-Kk 36y

S) DETEPMINA . VALORE DI K
PER CU) LA FUNZIONE VERFICA
le IPOTES| ©DelL TEOREHA Dl ROLIE

L((x) £ contivua w [a; L)
£ DERWVABILE /o Ja;b[
PERCHE' Lo SoNo PER IPOTESI f £ 4

CONMSIDERIANO ADPESSO :
V()= F(a)- Kk g(e) | mPomiaHO Q(a)=¢(b
l-[’(b) :gc(b)-K}(b) ()

F(@) - g(e)=F(b)-kq(b)
Kg(6)-Kga)=F(b)-F(a) =
K = Jc(b)‘:)((ﬁ)

3(b)-9(a)

SasTTUEMDO A K 1L VQLORE TPoVATO
POSSIAMO OSSERVARE CHE:




LA FUNZ2IONE :

x) =/(x) _ F(b)-F(o) -
) =) 3(5)-9() 3¢

VERIFIc& TUTTE LE )POTESI DEL

TEOREMA D1 ROLLE
QVNDI :

E‘Cc‘_]a,’L[_ = \Q'(C) =0
TROVIANO :

Q01 = F'(¥)- ZBIE gy

- g(5)-3()
S\ Avra -
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£ bwvidENDO PER  g'(c)#0

L'(c)  F(b)-f(a) TESI

g'c)  g9(v)-gl)




TEOREMA DI LAGRANGE
IPOTES|
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BGLHEA/O UN PUATO DI ASCISSA € x cul
1A RETTA TAMGENMTE E PARRALLELA
ALLa SeEcAnNTE AR



DMoSTRAZIONE
HolLto SENPLCE!

RQsfA APPUCARE |L TEOREMA DI CAUCHY

CONSIDERANDO COME FUNZIONE  4(x)
LA FUNZIONE :
9.(71):: A
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LE 2 FUON2IoN! VERIFICAWO TOUME LE
IPOTES| DEL TEOREMA D) CAUCHY QUINDI



Ycela;b[: L'<) _ £(b)-F(o)

§') — 8()-30)
ED ESSEADO: §'(c)=a

9(H)=b

%(0)=a
S| HA LA wosTRA TES|:

£'(¢) = a‘ﬁ)_ -i(a)




