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corgo di Matematica
prof. Claudio Desiderio

Modulo2: teoremi sulle funzioni derivabili
Funzioni reali di variabile reale

Unita' 2bis :
Altri Esercizi

> Teorema di Rolle
~ Teorema Di Lagrange
> Teorema di Cauchy

“Non accontentarti di restare nel GRIGIO per paura
del NERO, ma punta dritto al BIANCO..

e tuffati dentro!

Entra nel vortice.. quindi, rallenta:

ritroverai tuttii COLORI

e farai splendere sempre [a tua Vital!"



A . DIRE SE LA FUNZIONE F(w) NELC INTERVALO
;b ] sopDisF e IPoTESI DEL  TEOREMR DI
ROLLE o LAGRANMGE E /v caso AFFERMATIVO,

CRLCOLARE LE ASCISSE DE\ PUNMTI CHE VERIFICANO

IL TEORENA
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5 DATQ LQ FUNz‘ONE OC(M):{ ‘_an+a 1<N<2
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DETERNINARE L VALORE DI A W HODO CHE

NELL IWTERVALLO E’ ;2] Swn  APPLCABILE 1L
TEOREMA D\ LAGRAMGE E CRLCOLARE LE ASCISSE DEI
PUMTI CHE VERIFICAVO IL TEORENA

C
DIRE SE LE FUN2IOM S(0) £ 309

NELC WWITERVALLO [a; b] sobDisFwo e 1PoTESI
DEL TEOREMA D\ CAVCHY E ¥ caso AFFERHATIVO,
CRLCOLARE LE ASCISSE DE| PUNTI CHE VERIFICANVO IL TEORENA
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1. DIRE SE LA FUNZIONE F(%)= &n(ot-)
NELC INTERVALLO [2;2] sopDISFA LE IPoTESI
DEL TEOREMA D\ ROLLE o LAGRAMGE E ¥ caso
AFFERMATIVO, CRLCOLARE LE ASCISSE DEI PUNTI CHE
VERIFICANO IL TEORENA

CONTINUR N |:4,-z:|? S| PERCHE - CE. £&) >~

DERIVARILE W a2 [? S PERCHE
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2. DIRE SE LA FUNZONE J(W)=——
NELC INTERVALLO [5;0] sopDismA £ IPoTESI
DEL TEOREMA D\ ROLLE o LAGRAMGE E ¥ caso
AFFERNATIVO, CRLCOLARE LE ASCISSE DEI PUNTI CHE
VERIFICAVO L TEOREMA

CONTINUR IV E5i°:|? S\ PERCHE ~ CE. £() :m#a
DERIVABILE ¥/ ]-5;0[? S PERCHE

flgo 25 en (8w
(4-%)7‘ S(n-x)z (4-%)2

— 7-(‘ - El
=2t Vs
{o)= ?-(°§ - o Jts) # (o)
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3> DIRE SE LA FUNZONE (%) =\foxs+s
NELC INTERVALLO [0;4] soDpDISFA LE IPoTESI
DEL TEOREMA D\ ROLLE o LAGRAMGE E ¥ caso
AFFERMATIVO, CRLCOLARE LE ASCISSE DEI PUNTI CHE
VERIFICANVO IL TEOREMNA

CONTINUR IV [o ;4]? Si PERCHE  CE. fG)imy-5
DERIVABILE W Joi4[ © o peree

J(.(M)= 2 _ 4 \V/w_ >_E-'1
Z\fors s
J(4) = \e@g+s = 3

fo)= \kQ@+t = 4 J(4) #40)

=> PER IL TEOREMA DI LAGRANGE
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4. DIRE SE LA FUNZIONE () =\|+| -2
NELL INTERVALLO E‘ 1] sopDISFA LE IPOTESI
DEL TEOREMA D\ ROLLE o LAGRAMGE E ¥ aaso
AFFERMATIVO, CRLCOLARE LE ASCISSE DEI PUNTI CHE
VERIFICAVO L TEORENA

CONTINUR IV [2,4] ?s. PERCHE  CE. F0J: Vs eR
DERIVABILE W Ja;1[ 7
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DEL TEOREMA DI ROLLE O LAGRANGE



4b DIRE SE LA FUNZIONE  F()=\|«]-2
NELC INTERVALLO [o;4] sopDISFA LE IPoTESI
DEL TEOREMA D\ ROLLE o LAGRAMGE E ¥ caso
AFFERMATIVO, CRLCOLARE LE ASCISSE DEI PUNTI CHE
VERIFICAVO IL TEORENA

cONTINUR IN ED ;AT 7 S| PERCHE  CE. £OJ9: Vo R

DERIVABILE W o ;o[ 7
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5 Data LA FUNZIONE

.
7w oM<l

$69=

Y- arn+a 1<AN<2

-
DETERNINARE L VALORE DI a4 /W HODO CHE

NELC WWTERVALLO [0;2] Sw APPLCABILE 1L
TEOREMR D\ LAGRAMGE E CRLCOLARE LE ASCISSE DEI

PUVTI CHE VERIFICRVO IL TEORENA
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Sb Data LA FUNZIONE
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$69=

Y- arn+a 1<AN<2

-
DETERNINARE L VALORE DI a4 /W HODO CHE

NELC WWTERVALLO [0;2] Sw APPLCABILE 1L
TEOREMR D\ LAGRAMGE E CRLCOLARE LE ASCISSE DEI

PUVMTI CHE VERIFICRVO IL TEORENA
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6. DIRE SE LE FUNRION F(w)=3%1 G =4n-3
NELC IWWTERVALLO [o ;1] soDDIsFWo LE  1PoTESI
DEL TEOREMR D\ CAUCHY E W caso AFFERHATIVO,

CRLCOLARE LE ASCISSE DE! PUNTI CHE VERIFICANO
IL TEORENA

CONTINVUE IV ED;iI’ S1 PERCHE

CE. F6J : Vv eR
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X DIRE SE LE FUNZIOM F(W)=24. g()=3+x1
NELC IWWTERVALLO [2 ;5] soDDISFWo LE  1PoTESI
DEL TEOREMR D\ CAUCHY E W caso AFFERHATIVO,
CRLCOLARE LE ASCISSE DE\ PUNTI CHE V/ERIFICANO
IL TEORENA

COHPLETALO TU...

CONTINUE IV E ;SJ? S\ PERCHE
CE. £69 :
CE. ¢(») :

DERWVABILI W = ;5[ *
F)= Vo e R } IN PARTICOLARE N :l I:
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8 . DIRE SE LE FUNZIONI F(w)=|a-tm| (%) =bnte)
NELC IWWTERVALLO [z ;£] soDDISFWo LE  1PoTESI
DEL TEOREMR D\ CAUCHY E W caso AFFERHATIVO,
CRLCOLARE LE ASCISSE DEI PUNTI CHE V/ERIFICANO
IL TEORENA

CONTINVUE IV |: ,J7 Mo PERCHE
CE. £6J : m>0
CE. 9(») :m>1 gb) Nowvw E CONINUA NV =1

IV QUALE POSSIBILE W{ERVALLO E  VERIFICATO(

LA FUNVZIONE f() ,PER LA PRESENZA4 DEL
VALORE ASSOLUTO, POTREBE NON ESSERE DERIVABILE
NEI PUNTI W CVUI S| AVMMULLA L YALORE AssoLuTo,

OVVERO:
,_)C(u):|1-ﬁm| — a-bm =0

— bﬂ‘l =4 —> ©A=0C
= f(w) Nov E' DERWBILE W  w=e

PosSIQAHo PROVARE A VERIFICARE L TEORENA
DI CAUCHY NELL INERVALO [£ ;<]



gl, DIRE SE 25 FUNZON  F(w)=[t-tm| (%) =bne-0)

NELL \NTERVALIO |:zc ,'“] SODDISFVO LE  IPOTES
DEL TEOREHA D\ CAVCHY

CONTINVE IV [2 i<] 7 S1 PERCHE
CE. f6J :m>0
CE. 9(n) :7>1 (£>1)

DERIVABILI W 2 i 7

tf(%):li-lﬂntl 1'“’/0 :> lm*s 1 j y R
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A+e)
A Mol INTERESSA LA FUNZIONE NEW WIERVALO [£ ;<]
Fb)= - % PER % e:lf i“[

# o \V/'n_e::lf iel:

§0)=bt) = g0 =

e | a0
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