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corgo di Matematica
prof. Claudio Desiderio

Modulo2: teoremi sulle funzioni derivabili
Funzioni reali di variabile reale

Unita' 1:
Richiami teoremi ed Esercizi

> Teorema di Rolle
> Teorema Di Lagrange

“Non accontentarti direstare nel GRIGIO per paura
del NERO, ma punta dritto al BIANCO..

e tuffati dentro!

Entra nel vortice.. quindi, rallenta:

ritroverai tuttii COLORI

e farai splendere sempre [a tua Vital!"
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